
pglib Documentation
Release 2.4.0

Michael Kleehammer

Jan 20, 2021

Contents

1 Quick Start 3
1.1 Connecting . 3
1.2 Basic Selecting . 3
1.3 Parameters . 4

2 Asynchronous Quick Start 5
2.1 Connecting . 5
2.2 Selecting . 5

3 Building 7
3.1 OS/X . 7
3.2 Linux . 8
3.3 Windows . 8

4 Tips 9
4.1 Where X In Parameters . 9

5 API 11
5.1 pglib . 11
5.2 Connection . 12
5.3 ResultSet . 14
5.4 Row . 15
5.5 Error . 15

6 Data Types 17
6.1 Parameter Types . 17
6.2 Result Types . 18

Python Module Index 19

Index 21

i

ii

pglib Documentation, Release 2.4.0

pglib is a Python 3.5+ module for working with PostgreSQL databases. It is a C extension that exposes the libpq API.
It is designed to be small, fast, and as convenient as possible. It provides both synchronous and asynchronous APIs.

Unlike some libraries, it never modifies the SQL you pass. Parameters are passed using the official libpq protocol for
parameters.

Contents 1

http://www.postgresql.org/docs/9.3/static/libpq.html

pglib Documentation, Release 2.4.0

2 Contents

CHAPTER 1

Quick Start

1.1 Connecting

To connect, pass a libpq connection string to the connect() function.

import pglib
cnxn = pglib.connect('host=localhost dbname=test')

1.2 Basic Selecting

Connection.execute accepts a SQL statement and optional parameters. What it returns depends on the kind of
SQL statement:

• A select statement will return ResultSet with all of the rows.

• An insert, update, or delete statement will return the number of rows modified.

• Any other statement (e.g. “create table”) will return None.

If the SQL was a select statement, ResultSet.columns will be a tuple containing the column names selected.

The Row objects can be accessed by indexing into the ResultSet or iterating over it.

rset = cnxn.execute("select id, name from users")

print('columns:', rset.columns) # ('id', 'name')

print('count:', len(rset))
print('first:', rset[0])

for row in rset:
print(row)

3

http://www.postgresql.org/docs/9.3/static/libpq-connect.html#LIBPQ-CONNSTRING

pglib Documentation, Release 2.4.0

The PostgreSQL client library, libpq, stores all row data in memory while the ResultSet exists. This means that result
sets can be iterated over multiple times, but it also means large result sets use a lot of memory and should be discarded
as soon as possible.

Row objects are similar to tuples, but they also allow access to columns by name.

rset = cnxn.execute("select id, name from users limit 1")
row = rset[0]
print('id:', row[0]) # access id by column index
print('id:', row.id) # access id by column name

The SQL ‘as’ keyword makes it easy to set the name:

rset = cnxn.execute("select count(*) as cnt from users")
row = rset[0]
print(row.cnt)

The Connection.fetchrow method is a convenience method that returns the first result Row. If there are no results it
returns None.

row = cnxn.fetchrow("select count(*) as cnt from users")
print(row.cnt)

The Connection.fetchval method, another convenience method, returns the first column of the first row. If there are no
results it returns None.

count = cnxn.fetchval("select count(*) from users")
print(count)

Each row is a Python sequence, so it can be used in many places that a tuple or list can. To convert the values into a
tuple use tuple(row).

Finally, to make it convenient to pass a Row around to functions, the columns are also available from the row object.
Note that a column actually named ‘columns’ will override this.

print('columns:', row.columns)

Convert to dictionary:
d = dict(zip(row.columns, row))

1.3 Parameters

PostgreSQL supports parameters using $1, $2, etc. as a place holder in the SQL. Values for these are passed after the
SQL. The first parameter passed is used for $1, the second for $2, etc.

cnxn.execute("""
select id, name
from users

where id > $1
and bill_overdue = $2

""", 100, 1) # 100 -> $1, 1 -> $2

4 Chapter 1. Quick Start

CHAPTER 2

Asynchronous Quick Start

Most of the API is the same as the synchronous one, but any that communicate with the server require the await
keyword.

2.1 Connecting

To connect, pass a libpq connection string to the async_connect() function.

import asyncio
import pglib
cnxn = await pglib.connect_async('host=localhost dbname=test')

2.2 Selecting

There are asynchronous versions of execute, fetchrow, and fetchval:

rset = await cnxn.execute("select id, name from users")
row = await cnxn.fetchrow("select count(*) as cnt from users")
count = await cnxn.fetchval("select count(*) from users")

The ResultSet and Row objects don’t require await.

5

http://www.postgresql.org/docs/9.3/static/libpq-connect.html#LIBPQ-CONNSTRING

pglib Documentation, Release 2.4.0

6 Chapter 2. Asynchronous Quick Start

CHAPTER 3

Building

Before you build, you may want to try pip install pglib to see if pre-build binaries are already available. Binary wheels
are provided for OS X.

Otherwise you’ll need:

• Python 3.3 or greater

• the pglib source

• the compiler Python was built with

• PostgreSQL header files and lib files

Once these installed and paths are configured correctly, building is (supposed to be) as simple as running python3
setup.py build in the pglib source directory.

3.1 OS/X

Install PostgreSQL. The Postgres.app installation is particularly convenient.

Ensure that pg_config is in the path so setup.py can use it to determine the include and lib directories. If you are
using Postgres.app, you can add the following to your ~/.bashrc file:

export PATH=$PATH:/Applications/Postgres.app/Contents/MacOS/bin

You will also need Xcode installed and you’ll need to download the Xcode command line tools. Some versions of
Xcode provide a Downloads tab on the preferences. For later versions, run xcode-select –install on the command line.

The setup script will use the latest SDK directory to find the header and library files.

Once you have built pglib, you can install it into your global Python site directory using sudo python3 setup.
py install or into your venv directory using python3 setup.py install.

7

http://postgresapp.com

pglib Documentation, Release 2.4.0

3.2 Linux

You will need some header files and pg_config. The binary package names differ by distribution.

Component RedHat Debian
Python headers and libs python-devel python-dev
PostreSQL headers and libs postgresql-devel postgres-dev

Make sure pg_config is in your path before building. On RedHat-based systems, you’ll find it in /usr/pgsql-version/bin.

Once you have the necessary files and a compiler installed, download the pglib source and run python3 setup.py
build in the pglib source directory. Install into your site directory using sudo python3 setup.py install
or into your venv directory using python3 setup.py install.

3.3 Windows

This library has only been tested with 64-bit Python, not 32-bit Python on 64-bit Windows. It may work but it won’t
be tested until someone requests it.

There are two complications on Windows not present on the other operating systems:

• The PostgreSQL header files have an old copy of the Python header files.

• The resulting library uses libpq.dll which must be in the path to import.

First you will need Visual Studio 10 if building for Python 3.3. The setup.py scripts always look for the version of
Visual Studio they were built with.

The PostgreSQL files can come from an installed version or by downloading a zipped version. There will be 3
directories you will need: pgsql\bin, pgsql\lib, and pgsql\include.

Unfortunately, as of PostgreSQL 9.3, the PostgreSQL download includes the Python 2.7 header files. If these are used
you will get lots of errors about undefined items. To fix this, you must manually force setup.py to include the Python
3.3 include files before including the PostgreSQL include files. The Python header files are in the ‘include’ directory
under the Python installation.

To do this, create a setup.cfg file in the pglib directory and configure it with your directories:

[build_ext]
include_dirs=c:\bin\python33-64\include;c:\bin\pgsql\include
library-dirs=c:\bin\pgsql\lib

It is very important that the Python include directory is before the pgsql include directory.

Once this is done, make sure Python 3.3 is in your path and run: python setup.py build install. If
successful, a pglib.pyd file will have been created.

Since pglib dynamically links to libpq.dll, you will need the DLL in your path and the DLLs that it needs. This means
you will need the files from both pgsql\lib and pgsql\bin in your path.

8 Chapter 3. Building

http://github.com/mkleehammer/pglib/issues
http://www.enterprisedb.com/products-services-training/pgbindownload

CHAPTER 4

Tips

4.1 Where X In Parameters

You should never embed user-provided data in a SQL statement and most of the time you can use a simple parameter.
To perform a query like “where x in $1” use the following form:

rset = cnxn.execute("select * from t where id = any($1)", [1,2,3])

9

pglib Documentation, Release 2.4.0

10 Chapter 4. Tips

CHAPTER 5

API

5.1 pglib

pglib.version

The pglib module version as a string, such as “5.2.0”.

pglib.hstore

Wrap a dictionary with this type to pass as an hstore parameter. A raw dictionary is assumed to be JSON:

cnxn.execute("create table h(hcol hstore)")

value = {'one': 1, 'two': 2}
cnxn.execute("insert into h($1)", value) # <-- WRONG - this passes JSON
cnxn.execute("insert into h($1)", hstore(value)) # <-- OK

Note that reading hstore data will return a raw dictionary:

result = cnxn.fetchval("select hcol from h limit 1")
result is {'one': 1, 'two': 2}

connect(conninfo : string) --> Connection

Accepts a connection string and returns a new Connection. Raises an Error if an error occurs.

cnxn = pglib.connect('host=localhost dbname=test')

connect_async(conninfo : string) --> Connection

A coroutine that accepts a connection string and returns a new asynchronous Connection. Raises an Error if an
error occurs.

cnxn = yield from pglib.connect_async('host=localhost dbname=test')

defaults() --> dict

11

http://www.postgresql.org/docs/9.5/static/libpq-connect.html#LIBPQ-CONNSTRING
http://www.postgresql.org/docs/9.5/static/libpq-connect.html#LIBPQ-CONNSTRING

pglib Documentation, Release 2.4.0

Returns a dictionary of default connection string values.

PQTRANS_*

Constants returned by Connection.transaction_status():

• PQTRANS_ACTIVE

• PQTRANS_INTRANS

• PQTRANS_INERROR

• PQTRANS_UNKNOWN

5.2 Connection

class pglib.Connection

Represents a connection to the database. Internally this wraps a PGconn*. The database connection is closed when
the Connection object is destroyed.

Connection.client_encoding
The client encoding as a string such as “UTF8”.

Connection.pid
The integer backend PID of the connection.

Connection.protocol_version
An integer representing the protocol version returned by PQprotocolVersion.

Connection.server_version
An integer representing the server version returned by PQserverVersion.

Connection.server_encoding
The server encoding as a string such as “UTF8”.

Connection.status
True if the connection is valid and False otherwise.

Accessing this property calls PQstatus and returns True if the status is CONNECTION_OK and False otherwise.
Note that this returns the last status of the connection but does not actually test the connection. If you are caching
connections, consider executing something like ‘select 1;’ to test an old connection.

Connection.transaction_status
Returns the current in-transaction status of the server via PQtransactionStatus as one of PQTRANS_IDLE,
PQTRANS_ACTIVE, PQTRANS_INTRANS, PQTRANS_INERROR, or PQTRANS_UNKNOWN.

Connection.copy_from_csv(table: str, source, header=False)→ int
Copies a CSV file to the given table. Returns the number of rows copied.

table is the name of the table to copy to. You can also provide the columns to be populated:

count = cnxn.copy_from_csv("t1(b, a)", '"one",1\n"two",2')

The source can be a file-like object (not a filename) or the actual text of a CSV.

The header parameter is a flag. Pass True if your CSV has a header.

Connection.execute(sql [, param, ...]) --> ResultSet | int | None
Submits a command to the server and waits for the result. If the connection is asynchronous, you must use
await with this method.

12 Chapter 5. API

http://www.postgresql.org/docs/9.5/static/libpq-status.html#LIBPQ-PQPROTOCOLVERSION"
http://www.postgresql.org/docs/9.5/static/libpq-status.html#LIBPQ-PQSERVERVERSION
http://www.postgresql.org/docs/9.5/static/libpq-status.html#LIBPQ-PQSTATUS
http://www.postgresql.org/docs/9.5/static/libpq-status.html#LIBPQ-PQTRANSACTIONSTATUS

pglib Documentation, Release 2.4.0

If the command returns rows, such as a selecto statement or one using the returning keyword, the result will be
a ResultSet:

rset = cnxn.execute(
"""
select id, name
from users

where id > $1
and bill_overdue = $2

""", 100, 1) # 100 -> $1, 1 -> $2
for row in rset:

print('user id=', row.id, 'name=', row.name)

If the command is an UPDATE or DELETE statement, the result is the number of rows affected:

count = cnxn.execute("delete from articles where expired <= now()")
print('Articles deleted:', count)

Otherwise, None is returned.

cnxn.execute("create table t1(a int)") # returns None

Parameters may be passed as arguments after the SQL statement. Use $1, $2, etc. as markers for these in the
SQL. Parameters must be Python types that pglib can convert to appropriate SQL types. See Parameter Types.

Parameters are always passed to the server separately from the SQL statement using PQexecParams and pglib
never modifies the SQL passed to it. You should always pass parameters separately to protect against SQL
injection attacks.

Connection.listen(channel [, channel, ...]) --> None
Executes a LISTEN command for each channel.

This is only available for asynchronous connections.

Connection.notify(channel [, payload]) --> None
A convenience method that issues a NOTIFY command using “select pg_notify(channel, payload)”.

Note that pg_notify does not lowercase the channel name but executing the NOTIFY command via SQL will
unless you put the channel name in double quotes. For example cnxn.execute('NOTIFY TESTING')
will actually use the channel “testing” but both cnxn.execute('NOTIFY "TESTING"') and cnxn.
notify('TESTING') will use the channel “TESTING”.

Connection.notifications(timeout=None) --> (channel, payload) | None
Returns a list of notifications. Each notification is a tuple containing (channel, payload).

To use this, first issue one or more LISTEN statements: cnxn.execute('LISTEN channel'). Note that
if you don’t put the channel name in double quotes it will be lowercased by the server.

Notifications will always contain two elements and the PostgreSQL documentation seems to indicate the payload
will be an empty string and never None (NULL), but I have not confirmed this.

Connection.fetchall(sql [, param, ...]) --> ResultSet
Executes the SQL and returns a result set. This is identical to execute except it will raise an error if the SQL
does not return results:

rset = cnxn.fetchall("select name from users")
for row in rset:

print('name:', row.name)

5.2. Connection 13

http://www.postgresql.org/docs/9.5/static/libpq-exec.html#LIBPQ-PQEXECPARAMS
http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/SQL_injection
http://www.postgresql.org/docs/9.5/static/sql-notify.html

pglib Documentation, Release 2.4.0

Connection.fetchrow(sql [, param, ...]) --> Row | None
A convenience method that submits a command and returns the first row of the result. If the result has no rows,
None is returned. If the connection is asynchronous, you must use await with this method.:

row = cnxn.fetchrow("select name from users where id = $1", userid)
if row:

print('name:', row.name)
else:

print('There is no user with this id', userid)

Connection.fetchval(sql [, param, ...]) --> value
A convenience method that submits a command and returns the first column of the first row of the result. If there
are no rows, None is returned. If the connection is asynchronous, you must use await with this method.

name = cnxn.fetchval("select name from users where id = $1", userid)
if name:

print('name:', name)
else:

print('There is no user with this id', userid)

Connection.fetchvals(sql, [, param, ...]) --> List[object]
A convenience method that submits a command and returns the first column of every row of the result. If there
are no rows, an empty list is returned.

names = cnxn.fetchval(“select name from users”)

5.3 ResultSet

class pglib.ResultSet
Holds the results of a select statement: the column names and a collection of Row objects. ResultSets behave as
simple sequences, so the number of rows it contains can be determined using len(rset) and individual rows
can be accessed by index: row = rset[3].

ResultSets can also be iterated over:

rset = cnxn.execute("select user_id, user_name from users")
for row in rset:

print(row)

A ResultSet is a wrapper around a PGresult pointer and contains data for all of the rows selected in Post-
greSQL’s raw, binary format. Iterating over the rows converts the raw data into Python objects and returns them
as Row objects, but does not “use up” the raw data. The PGresult memory is not freed until the ResultSet is
freed.

ResultSet.columns
The column names from the select statement. Each Row from the result set will have one element for each
column.

ResultSet.colinfos
A tuple of column information structures. Each element is a named tuple with the following fields:

name The column name.

type The OID (int) of the column.

mod The type modifier (int). See PQfmod. This is often the precision of a field. It is usually -1 for variable
length field types like “text”.

14 Chapter 5. API

pglib Documentation, Release 2.4.0

size The size of the column in bytes.

5.4 Row

class pglib.Row
Row objects are sequence objects that hold query results. All rows from the same result set will have the same
number of columns, one for each column in the result set’s columns attribute. Values are converted from
PostgreSQL’s raw format to Python objects as they are accessed. See Result Types.

Rows are similar to tuples; len returns the number of columns and they can be indexed into and iterated over:

row = rset[0]
print('col count:', len(row))
print('first col:', row[0])
for index, value in enumerate(row):

print('value', index, 'is', value)

Columns can also be accessed by name. (Non-alphanumeric characters are replaced with an underscore.) Use
the SQL as keyword to change a column’s name

rset = cnxn.execute("select cust_id, cust_name from cust limit 1")
row = rset[0]
print(row.cust_id, row.cust_name)

rset = cnxn.execute("select count(*) as total from cust")
print(rset[0].total)

Unlike tuples, Row values can be replaced. This is particularly handy for “fixing up” values after fetching them.

row.ctime = row.ctime.replace(tzinfo=timezone)

Row.columns
A tuple of column names in the Row, shared with the ResultSet that the Row is from.

If you select a column actually named “columns”, the column will override this attribute.

To create a dictionary of column names and values, use zip:

obj = dict(zip(row.columns, row))

5.5 Error

class pglib.Error
The error class raised for all errors.

Errors generated by pglib itself are rare, but only contain a message.

Errors reported by the database will contain a message with the format “[sqlstate] database message” and the
following attributes:

5.4. Row 15

pglib Documentation, Release 2.4.0

attribute libpq field code
severity PG_DIAG_SEVERITY
sqlstate PG_DIAG_SQLSTATE
detail PG_DIAG_MESSAGE_DETAIL
hint PG_DIAG_MESSAGE_HINT
position PG_DIAG_STATEMENT_POSITION
internal_position PG_DIAG_INTERNAL_POSITION
internal_query PG_DIAG_INTERNAL_QUERY
context PG_DIAG_CONTEXT
file PG_DIAG_SOURCE_FILE
line PG_DIAG_SOURCE_LINE
function PG_DIAG_SOURCE_FUNCTION

The most most useful attribute for processing errors is usually the SQLSTATE.

16 Chapter 5. API

http://www.postgresql.org/docs/9.5/static/errcodes-appendix.html

CHAPTER 6

Data Types

Right now there is a limited set of data types and text is always encoded as UTF-8. Feel free to open an issue to request
new ones.

6.1 Parameter Types

Parameters of the following types are accepted:

Python Type SQL Type
None NULL
bool boolean
bytes bytea
bytearray bytea
datetime.date date
datetime.datetime timestamp
datetime.time time
datetime.timedelta interval
decimal.Decimal numeric
float float8
int int64 or numeric
str text (UTF-8)
uuid.UUID uuid
tuple<int>, list<int> int[]
tuple<str>, list<str> str[]
tuple<date>, list<date> date[]
hstore(dict) hstore
dict json

Arrays can only contain one type, so tuples and lists must contain elements of all of the same type. Only strings and
integers are supported at this time. Note that a list or tuple can contain None, but it must contain at least one string or
integer so the type of array can be determined.

17

https://github.com/mkleehammer/pglib/issues

pglib Documentation, Release 2.4.0

To use hstore, you must first tell pglib what OID was assigned to hstore.

6.2 Result Types

The following data types are recognized in results:

SQL Type Python Type
NULL None
boolean bool
bytea bytes
char, varchar, text str (UTF-8)
float4, float8 float
smallint, integer, bigint int
money decimal.Decimal
numeric decimal.Decimal
date datetime.date
time datetime.time
timestamp / timestamptz datetime.datetime
uuid uuid.UUID
int[] list<int>
text[] list<str>
date[] list<date>
hstore dict
json & jsonb dict

Python’s timedelta only stores days, seconds, and microseconds internally, so intervals with year and month are
not supported.

18 Chapter 6. Data Types

Python Module Index

p
pglib, 11

19

pglib Documentation, Release 2.4.0

20 Python Module Index

Index

C
client_encoding (pglib.Connection attribute), 12
colinfos (pglib.ResultSet attribute), 14
columns (pglib.ResultSet attribute), 14
columns (pglib.Row attribute), 15
Connection (class in pglib), 12
copy_from_csv() (pglib.Connection method), 12

E
Error (class in pglib), 15

H
hstore (in module pglib), 11

P
pglib (module), 11
pid (pglib.Connection attribute), 12
protocol_version (pglib.Connection attribute), 12

R
ResultSet (class in pglib), 14
Row (class in pglib), 15

S
server_encoding (pglib.Connection attribute), 12
server_version (pglib.Connection attribute), 12
status (pglib.Connection attribute), 12

T
transaction_status (pglib.Connection attribute),

12

V
version (in module pglib), 11

21

	Quick Start
	Connecting
	Basic Selecting
	Parameters

	Asynchronous Quick Start
	Connecting
	Selecting

	Building
	OS/X
	Linux
	Windows

	Tips
	Where X In Parameters

	API
	pglib
	Connection
	ResultSet
	Row
	Error

	Data Types
	Parameter Types
	Result Types

	Python Module Index
	Index

